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A numerical algorithm is presented for the solution of 3-dimensional problems involving a 
fluid with a free surface. The fluid is assumed to be ideal, and the exact non-linear boundary 
conditions are applied on the fluid surface. The problem is formulated in terms of a singular 
integral equation, which is discretized and the resulting algebraic equations solved by a 
Newton process. Advantage is taken of the structure of the free-surface conditions, enabling 
a substantial reduction in the number of unknowns to be determined. Some sample computa- 
tional results are presented, and compared with the predictions of linearized theory. 0 1989 

Academic Press, Inc. 

1. INTR~OUCTI~N 

In this paper, an algorithm is presented for the efficient solution of hydro- 
dynamical problems in three dimensions, in which a free surface is involved. For 
definiteness, we shall consider the classical problem of flow due to a moving point 
source submerged beneath an otherwise quiescent fluid, although the algorithm is 
clearly capable of wider applicability. In fact, a version of this algorithm has been 
used previously by Forbes [S] to obtain approximate solutions for flow behind a 
moving pressure distribution. Here, we extend and improve this algorithm, with the 
aim of demonstrating its usefulness in an actual flow simulation. 

The linearized solution for flow due to a moving point source is well known. It 
was apparently originally derived by Havelock [7], and the solution for infinitely 
deep fluid, as well as fluid of arbitrary finite depth, may be found in Wehausen and 
Laitone [21]. To the extent that the solution represents the velocity potential due 
to a submerged source singularity, it may be used as a Green function for linearized 
problems of ship hydrodynamics, in which the presence of the free surface is of 
importance. However, this Havelock Green function is a complicated expression 
which cannot be represented in terms of elementary functions, and thus its efficient 
numerical evaluation has long been an important problem in ship hydrodynamics. 
The problem is discussed, for example, by Lee [9] and Noblesse [ 141 has derived 
useful alternative forms for the function, each of which is appropriate to some 
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portion of the space surrounding the point source. A comprehensive discussion of 
the evaluation of this source potential is given by Newman [13]. 

The numeric31 solution of non-linear problems in two dimensions involving a free 
surface under gravity has met with considerable success recently, and a variety of 
techniques has been employed. Some of this work is summarized in the review 
article by Yeung [22]. Finite-difference methods were used by von Kerczek and 
Salvesen [20] to solve for flow due to a pressure distribution at the surface of a 
running stream of finite depth, and Schwartz [ 171 has solved this problem in water 
of infinite depth using a boundary-integral formulation. An investigation of flow 
over a submerged weir was undertaken by Bettess and Bettess [l] utilizing a linite- 
element approach. 

For problems in perfect fluid flow, the boundary-integral technique seems the 
most appealing, for it has the advantage of reducing a 2-dimensional problem to an 
equation along a line and a 3-dimensional problem to one involving a surface. 
Schwartz [17] formulated his problem in an inverse plane in which the velocity 
potential and streamfunction were used as independent variables, since this has the 
advantage of mapping the unknown surface location in the physical plane onto a 
straight line of known position in the inverse plane. When combined with the 
boundary-integral technique, this approach forms the basis of a powerful numerical 
algorithm for the solution of such problems. However, this inverse-plane formula- 
tion is not available in cases where singularities or stagnation points occur within 
the fluid region, since the required transformation becomes singular at such points. 
This difficulty has been overcome by Forbes [4], who obtained a numerical 
solution for flow about a line vortex beneath the surface of a running stream, using 
a boundary-integral method in the plane of the physical variables, which is as 
efficient as those formulated in the inverse plane. 

Numerical solutions to non-linear free-surface hydrodynamical problems in three 
dimensions are considerably rarer, due to the obvious computational difficulty that 
the extra dimension entails. Some exceptions are the investigations of periodic non- 
linear short-crested waves of Roberts [16] and Marchant and Roberts [ll], and 
the solution for unsteady flow about a transom stern obtained by Coleman [2]. 

In the present paper, we seek the solution for steady flow about a point source 
singularity submerged beneath the surface of a fluid of infinite depth. The problem 
is formulated using a boundary-integral method and gives rise to a singular 
integrodifferential equation along the exact unknown free-surface location. This is 
to be solved in conjunction with the non-linear free-surface conditions at this 
boundary. Details of the problem formulation are given in Section 2. For complete- 
ness, the linearized solution is reviewed briefly in Section 3, and in Section 4, the 
numerical method for the solution of the full non-linear problem is described. By 
exploiting the structure of the boundary conditions at the free surface, an efficient 
method is derived in which the number of unknowns to be determined may 
essentially be halved, resulting in an eightfold reduction in the amount of required 
computer run-time. Some sample results of computation are given in Section 5, and 
a summary in Section 6 concludes the paper. 
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2. PROBLEM FORMULATION 

Consider an incompressible, inviscid fluid of infinite depth flowing irrotationally 
with speed c. The fluid possesses an upper free boundary and is subject to the 
downward acceleration g of gravity. A Cartesian coordinate system is defined such 
that the z-axis points vertically, and the x- and y-axes lie in the plane of the 
undisturbed free surface. Relative to this coordinate system, the flow is directed 
along the positive x-axis. A point source of strength m volume units per unit of time 
is fixed, relative to the coordinate system, at a distance H vertically below the 
origin. 

Dimensionless variables are now defined, in which H is taken as the unit of 
length and all velocities are referred to the quantity c. Because the fluid flows irrota- 
tionally, a velocity potential @ may be defined, and this is made dimensionless with 
respect to the product cH. There are thus two dimensionless parameters upon 
which solutions to this problem depend; these are E =m/(cH2) the dimensionless 
source strength, and F = c/( gH)“* the Froude number based on the submergence 
depth of the source. 

Since the fluid is incompressible and flows irrotationally, the velocity potential @ 
satisfies Laplace’s equation 

V2@=0 (2.1) 

within the infinitely deep fluid region. In the neighbourhood of the source, the 
velocity potential becomes singular according to 

Q-+x- 
E 

47r[x2 + y2 + (z + 1)*]1’2 as (x, Y, z) + ((40, - 11, (2.2) 

and at i&rite depth, the condition of uniform flow 

(@m Qy, @,) + (LO, 0) as z--,-co (2.3) 

must be satisfied, in which subscripts denote partial differentiation. 
If the unknown free-surface location is described by the equation z = [(x, y), then 

it is necessary to impose an upstream radiation condition of the form 

(2.4) 

although this condition is not sufficient to prevent the appearance of upstream 
waves, and a stronger condition related to the rate of decay of @ upstream is 
normally required. This will be discussed in more detail later. On the unknown 
free-surface location, the kinematic condition 

@xi, + @“i, = @, on z=Ux, Y) (2.5) 
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indicates that the fluid velocity is tangent to this surface, and the dynamic condition 

$F2(@;+cP;+@;)+<=;F2 on z=i(x, Y) (2.6) 

states that the pressure is everywhere constant, being equal to that of the atmo- 
sphere. 

The problem defined by Eq. (2.1)(2.6) can be formulated in a manner suitable 
for solution by a boundary-integral method, by making use of Green’s second 
formula. Consider the volume V shown in Fig. 1, which consists of the entire fluid 
region, except for a small sphere about the source point (0, 0, - 1) and a small 
hemisphere about a typical point Q(x, y, z) on the free surface. The upper surface 
of volume V is denoted by the symbol S,, and consists of the entire fluid surface, 
with a small circle about the point Q excluded. The small hemispherical surface 
about point Q is S, and the small closed spherical surface S, centred at the source 
excludes this singular point from the volume V, which is imagined to be contained 
within the infinite hemispherical surface S,. Thus the boundary of volume V can 
be written 

av=s,+s,+s,+s,. 

Within volume V, the function Q, - x is harmonic, by Eq. (2.1), and vanishes at 
infinity, as indicated by Eq. (2.3) and (2.4). If P( p, 0, t) is any point within volume 
V, then the function l/R,, is also harmonic in V, where 

is the distance measured from the surface point Q to point P. It therefore follows 
from Green’s second formula that 

(@-“b&y 
PQ 

-+$+Ls=O, 
PQ 

(2.7) 

in which n denotes the unit normal to the surface, here chosen to point into the 
fluid region. As surface S, expands to infinity, the hemispherical surface S, shrinks 

FIG. 1. Schematic diagram of the fluid volume and its bounding surfaces. 
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to the surface point Q and the spherical surface S, 
(0, 0, - 1 ), Eq. (2.7) yields 

collapses to the source point 

27c(@-x)= - 
[x2+ y2+;z+ 1)2]1’2 

+ jjs,[(m-x)p~(~)-~~(“x)P]ds,~ (2.8) 

in which point P now lies on the punctured surface S,. 
The solution to the present problem consists of finding functions [ and @ 

satisfying the non-linear surface conditions (2.5) and (2.6), coupled with the 
singular integrodifferential equation (2.8). The integral in (2.8) may be rendered less 
singular by addition and subtraction of the quantity 

(@-xh2 jjST& (g--) dsp, (2.9) 

which has the advantage that the integral may be evaluated in closed form, 
following Landweber and Macagno [S]. To evaluate it, consider the Gauss flux 
theorem 

D-A& (i&J dsp=o, 
(2.10) 

which follows since l/R,, is harmonic within volume V shown in Fig. 1. The 
contribution to the integral in Eq. (2.10) from surface S, is at once seen to be zero, 
and it may also be shown by straightforward limiting arguments that surfaces S, 
and S, give contributions -271 and 27c, respectively. These amounts cancel, so that 
the integral in (2.9) is zero. Thus Eq. (2.8) becomes 

2X(@ - X)Q = - 
cx2+y2+;z+ l)‘,; 

+ jj~~[(~--),-(g-*,,l~(~)dsp 

- 
JJ l+@-~)~dS~. 

sr R,, an, 
(2.11) 

The first integral on the right-hand side is now non-singular, as a Taylor-series 
expansion of the type described by Miloh and Landweber [12] reveals. 

The symbol n in Eq. (2.11) denotes the downward-pointing unit normal vector 
to the free surface and may be written 

54 + 5,j - k 
n= [1+[:+1;1”*’ 

(2.12) 
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The surface integrals in (2.11) may now lx rewritten as double integrals by projec- 
tion onto the x - y plane using the formula 

(2.13) 

in which the normal n is given in Eq. (2.12). It is also clear from the governing 
equations (2.1)-(2.6), and from consideration of the physical problem itself, that 
the solution functions should be laterally symmetric, as described by the equations 

ax, - Y I= txx, Y), 

i,(x, -Y) = i,(x, Y), 

i,(x, -Y) = 4,(x, Y), 

@(x, -Y, z) = @(x, Y, z). 

(2.14) 

Equations (2.12k(2.14) may now be incorporated into Eq. (2.11), and after some 
algebra, an integrodifferential equation is obtained in the form 

w@(Q)-x)= - CX2+Y2+c;~Q,+l,21~:2 

+ jomd~jm dpC~(P)-~(Q,-p+xlK”‘(P,~,x,y) 
--co 

in which the kernel functions are 

and 

1 
K’2’(p’ O’ x’ ‘)= [(p -x)’ + ((z + y)’ + (((2’) - QQ))2]1’2 

1 

+ [(~--x)‘+(a-~Y)~+(i(P)-r(Q))~l”~’ 

(2.15) 

Notice that the kinematic free-surface condition (2.5) has been used to simplify the 
integrands in Eq. (2.15). In addition, the punctured surface ST has been replaced 
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with the full free surface of the fluid, since the first integral on the right-hand side 
of Eq. (2.15) is non-singular, and the second integral has a weak integrable 
singularity as P + Q. 

The solution of this problem requires the determination of the three functions @, 
c?,, and Qz at the unknown free surface. However, it is possible to re-formulate the 
free-surface conditions (2.5) and (2.6) in such a way that the numerical method to 
be described in Section 4 need only solve for one of these quantities independently. 
This affords great saving in computational expense. The method consists of 
observing that the free-surface conditions involve the functions @,.(x, y, [(x, y)) 
and @,(x, y, c(x, y)). These are not the same as the x- and y-derivatives of the 
velocity potential evaluated at the free surface, @(x, y, c(x, y)). On the surface 
z = i(x, y), the velocity potential may be regarded as a function simply of the two 
independent variables x and y and will be denoted by the symbol 

4(x, Y) = @(X> YY 5(-T Y)). (2.16a) 

The chain rule of calculus enables the velocity components QX and CD? at the surface 
to be written in terms of derivatives of the function defined in Eq. (2.16a) according 
to the formulae 

$4(x, Y) = @x(x, Y, ux, Y)) + @z(x, Y, U-T Y)) ixk Y) 
(2.16b) 

The kinematic condition (2.5) is now used to eliminate the quantity @* from 
equations (2.16b), and these equations are then solved for the functions C& and QV 
to give 

(2.17) 

in which the arguments of the functions Qp,, @/ax, etc. have been suppressed. The 
kinematic condition (2.5) and the relations (2.17) are substituted into the Bernoulli 
equation (2.6), and after some algebra, a free-surface condition is obtained in the 
final form 

2 = ~,5,(awy) + cu + I;: + r:) Gk YW* 
ax 1 +i.; 9 (2.18) 

in which 

G(x,y)=(l+[;)(l-21/F*)- 
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The solution of this problem consists of determining functions 4(x, y) = Q(Q) and 
((x, y) which satisfy the integral equation (2.15) and the surface condition (2.18). 

3. THE LINEARIZED SOLUTION 

When the dimensionless source strength E is small, it is possible to develop the 
functions @ and [ as regular perturbation expansions in this parameter. A linearized 
problem then results when only first-order terms in E are retained. The solution is 
well known, and the linearized formula for CD thus obtained is the classical 
Havelock Green function, which may be found in Wehausen and Laitone [Zl 1. For 
convenience, we briefly review this solution here. 

In its most basic form, the Havelock source potential may be written 

& & 
dyx, y, z)=x- 

47r[X*+y*+(Z+1)2]“2-4?r[x2+y2+(Z-1)2]1’2 

ke 

k(r ~ 1) + ik(x cos B + y sin 8) 

k-k, 
dk dtl 

+ O(E2). (3.1) 

Notice that the double-integral term is formally divergent, since the integrand 
becomes singular when k = k,, where 

k,= 
1 

F* cos* 9’ 

In order to overcome this difficulty, the double-integral term must be interpreted in 
such a way that a finite function is obtained, possessing a wave-like component 
downstream of the source and an evanescent region upstream, in accordance with 
a stronger statement of the radiation condition (2.4). Various methods exist for 
doing this, and each leads to a different form of the expression for the source 
potential, as discussed by Noblesse [14]. 

To obtain the Havelock form of the potential, the singularity at k = k, in the 
complex k-plane is by-passed with a semi-circle of vanishingly small radius and 
yields an expression similar to that given by Miloh and Landweber [12]. The 
linearized free-surface elevation corresponding to this form of the source potential 
is 

ux, Y) = - &F2x 
27r[x2 + y* + 113’2 

2 

+“F 
s 

42 
7c2 o cm 0. o s 

~0 k2epk sin(kx cos 0) cos(ky sin 0) dk de 
k-k,, 

sec3 Oe-ko cos(k,x cos 0) cos(k,y sin 0) d&‘+ O(E*), (3.2) 

581!82;2-7 
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in which the singular integral with respect to k is to be interpreted in the Cauchy 
principal-value sense. This form is most useful when x is small, but becomes difficult 
to evaluate at a great distance from the submerged point source. 

An alternative form of the source potential has been derived by Peters [ 1.51 and 
is presented by Noblesse [ 143. It is not a valid representation at x = 0, but has the 
advantage that it is relatively straightforward to evaluate at larger distances from 
the origin. In this way, it complements the Havelock form given in Eq. (3.2). The 
free-surface elevation corresponding to the Peters form of this function is 

m Y) = - 

X 

+ 

&F2 sgn(x) 
s 

=I2 cos 8 
II2 0 

I m kepki-‘I cos(ky sin 0) g(k, 0) dk de 

0 F4k2 + cos’ 8 

&z-z(X) a 
- -mtep s 

F252 cos(x<) cos( ~$2) dL + O(E’), 
7-c (3.3) 

in which, for convenience, we have written 

g(k, (3) = F2k sin(k cos 0) + cos 0 cos(k cos O), 

&I) = [A2 + l] l/‘/F’, 

and H(x) denotes the Heaviside unit-step function, having the value zero for x < 0 
and unity when x > 0. In practice, we find that the Havelock form (3.2) yields 
accurate answers in the approximate domain 1x1 ~4, and outside this region the 
Peters form (3.3) is used instead. 

4. NUMERICAL METHODS 

In this section, we describe a numerical method for the solution of the non-linear 
problem governed by Eq. (2.15) and (2.18). The algorithm is an extension of the 
technique developed for 2-dimensional problems by Forbes and Schwartz [6], and 
a prototype version of it appears in the article by Forbes [S]. By contrast, the 
evaluation of the linearized surface elevation given in Eq. (3.2) and (3.3) is a 
relatively straightforward affair and has been accomplished using 96-point Gauss- 
Legendre quadrature, and 68-point Gauss-Laguerre and 96-point Gauss-Hermite 
integration formulae, with abscissae and weight factors taken from the book by 
Stroud and Secrest [19]. 

For the solution of the non-linear problem, a rectangular lattice is defined, in 
which- the N+ 1 x-coordinates of the lattice points are x0, xi, . . . . x,,, and the M + 1 
y-coordinates are y,, y,, . . . . y,,,,. The points are evenly spaced, with intervals Ax and 
Ay in the x- and y-directions, respectively. The free-surface elevation [(x, y) and the 
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velocity potential 4(x, y) defined in Eq. (2.16a) are approximated by discrete point 
values ck,, and 4k,, at the grid points (x,, Y,), k = 0, 1, . . . . N, 1= 0, 1, . . . . M. 

The asymmetry of the solution about the plane x = 0 is imposed by requiring that 
Eq. (2.4) be satisfied at the first row of mesh-points upstream. Thus we specify a 
numerical radiation condition 

to,,= (L)o.,= (i,)o,,=o~ 
4o.,=xo~ (4.1) 

ad 
( ) ay 0,I = 0, I = 0, 1, . ..) M. 

The free-surface condition (2.18) is then satisfied at this first row of points by the 
additional condition 

a4 
( ) ax o.,=ly I=O, 1, . ..) M. 

The conditions (2.15) and (2.18) at the unknown free surface are solved by a 
Newtonian iteration scheme. As explained in Section 2, the free-surface condi- 
tion (2.18) has been written in a form that allows the Newton’s method algorithm 
to solve for a singZe unknown function at the free surface, rather than attempting 
to determine the two functions 4 and [ concurrently (after having eliminated @, 
using the kinematic condition (2.5)). This effectively halves the number of inde- 
pendent unknown functions to be obtained at the free surface, thus reducing the 
storage requirements of this algorithm by a factor of four and the runtime 
requirements by a factor of eight. Accordingly, we may treat the surface elevation 
[(x, y) as the only independent function at the free surface and define a vector 

” = c-7 (iX)k,O, (i.dk,l, ...3 (Lh,M, .-IT, k = 1, 2, . . . . N 

of length N(M+ l), containing the x-derivatives of the function c at the remaining 
free-surface mesh points. This vector u of unknowns will be obtained by Newton’s 
method in what may be regarded as the outer phase of a two-stage iteration 
process, in which the inner phase consists of determining 4(x, y) from Eq. (2.18) at 
each Newtonian iteration. 

To begin the computation, an initial guess is required for the vector u. It is usually 
sufficient to set the elements of this vector to zero, although a better estimate is 
often provided by some previously computed non-linear solution, obtained with 
slightly different values of the parameters F or E. The values of [ are next obtained 
by trapezoidal-rule integration of the elements of vector u, using initial conditions 
supplied by equations (4.1) and (4.2). This gives 

Lt I,/ = ik., + t M(lx)k,/ + (ixh + 1.11, 
l=O, 1, . ..) M, k=O, 1, . . . . N- 1. (4.3) 
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The values of i, are also required and may be obtained by differentiation of the 
approximations to c given in Eq. (4.3). To do this, Forbes [S] used straightforward 
Lagrangian five-point difference formulae, but it has since been observed that this 
can lead to the generation of unacceptable numerical error. Accordingly, a cubic 
spline has been fitted through the values [k,O, ck, 1, . . . . [k,M, for k = 1,2, . . . . N, and 
this has been differentiated exactly to yield the y-derivatives i, at the knot points. 
Notice that cubic-spline interpolation requires “end conditions,” and at the plane 
y = 0, we have therefore supplied the exact symmetry condition [, = 0, which comes 
from Eq. (2.14), and at the truncation boundary y = y,, the “zero moment” condi- 
tion c, = 0 has been specified. 

Values of 4 can now be generated from knowledge of the function [ and its 
derivatives, using the free-surface condition (2.18). This condition has been written 
in the form of a “parabolic” partial differential equation which can be integrated 
with respect to x using the method of lines. Following Forbes [S], a predictor- 
corrector method is used, based on the forward-Euler formula and a single iteration 
of the trapezoidal rule. This yields the two-step formula 

m,.l.~=m,,,+fnx[(~)~,~+(~)~+l,,l, l=O, I,..., M, (4.4) 

in which the derivative &j/ax is given by the expression (2.18). Notice that the 
y-derivative @lay must be evaluated using cubic-splines as before, after each step 
in Eq. (4.4) for k = 0, 1, . . . . N- 1. 

It remains to solve the integrodifferential equation (2.15), and this is done 
approximately using Newton’s method. The equation is first evaluated at the half- 
mesh points (xk- 1,2, y,), k = 1, 2, . . . . Iv’, 1 =O, 1, ,.., M, since the dependent variables 
are all known at the first row of points upstream, by the radiation condition (4.1) 
and (4.2). The domain of integration is next truncated to the rectangle 
x,, <x d xN, y, < y < y,, and the singularity removed from the integrand. This is 
accomplished by re-writing the last integral on the right-hand side of Eq. (2.15) in 
the form 

s s 
yM da xN d&(P)K'2'V, Q,-cx(Q)S"'(P,Q,l+i,(Q)Z(Q) 

YO x0 

in which the function KC2’ is as given in Eq. (2.15), and 

C2’(p 
1 

g x y)= > 9 > CA(Q)(~-x)'-B(Q)(p-x)(a+y)+C(Q)(a+y)~l"' 
1 

+CA(Q)(p-x)2+B(Q)(p-x)(~-y)+C(Q,!~-~,21"2' 
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and 

Z(Q) = lYM da SXN dp P2)( p, 6, x, y), 
YO x0 

where for convenience we have defined 

A(Q) = 1+ I;:(Q), 

B(Q) = 2ix(Q) i,(Q) 

C(Q) = 1 + i.;(Q). 

The function Z(Q) can be evaluated in closed form, by making use of the indefinite 
integral 

i.l ds dt 

[As’ + Bst + Ct2] l/2 

+ -&ln(2C1+Bs+2[C(As2+Bst+C12)]1’2)+h,(s)+h2(t), 

in which the functions h, (s) and h2(f) are arbitrary functions of integration and do 
not affect the value of I(Q). 

The integrals in this approximation to Eq. (2.15) are finally discretized using 
Simpson’s rule, and values of the dependent variables at the half-grid points 
(xk- 1,2, yr), k = 1, 2, . . . . N, I= 0, 1, . . . . M are interpolated onto the whole mesh using 
a three-point formula consistent with Simpson’s rule, as described by Forbes and 
Schwartz [6]. This now yields a system of N(M + 1) non-linear algebraic equations 
in terms of the unknown vector II, which we write in the form 

E(u) = 0. (4.5) 

This system is solved by Newton’s method, in which a correction vector c is 
computed as the solution to the matrix equation 

J(u) c = -E(u), (4.6) 

and the symbol J denotes the Jacobian matrix of derivatives. The correction vector 
c is added to the vector u of unknowns, and the iteration is repeated until the 
magnitude of the error vector E in Eq. (4.5) has been reduced below some pre-set 
tolerance. If j/El/ is increased at some iteration, rather than decreased, then the 
vector c is halved and the iteration repeated. 
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It is clear that most of the computational time in this algorithm is spent 
evaluating the Jacobian matrix J, by taking forward differences of the error vector 
E, and in solving the matrix equation (4.6). Great savings may therefore be made 
by attempting to reuse the Jacobian where appropriate. Accordingly, we store a 
PLY-decomposition of matrix J, enabling the solution of Eq. (4.6) with different 
right-hand sides, without having to repeat the row reduction. In this way, it is 
possible to continue using the same Jacobian matrix, until convergence is no longer 
rapid enough, at which point a new Jacobian is computed. In practice, however, it 
is usually sufficient to perform four or live iterations with the same Jacobian matrix 
in order to reduce the root-mean-squared error N-‘(M+ 1))’ i/El\ below lo-*. 

5. PRESENTATION OF RESULTS 

In this section, we investigate the properties of some numerical solutions 
obtained at one value of the Froude number F = 0.7. Solutions at other values of 
F do not appear to differ qualitatively from these to any great extent, so that the 
behaviour of solutions presented here may be seen as typical of other Froude 
numbers. 

A perspective view of the linearized free-surface elevation for the case 
F= 0.7, E = 2.6 is given in Fig. 2, and has been evaluated using the Havelock and 
Peters forms discussed in Section 3. In order to make the surface disturbances more 
clearly visible, the scale on the z-axis has been expanded by a factor of three. In 
addition, the surface has been extended by reflection about the centre plane y = 0, 
in view of the symmetry conditions (2.14). It is well known that the surface wave 
pattern consists of two different types of waves, as is discussed in detail by 

FIG. 2. Perspective view of the free-surface elevation predicted using linearized theory, for the case 
F= 0.7, E = 2.6. The vertical scale has been magnified by a factor of three. 
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Wehausen and Laitone [21] and Stoker [lS, p. 2371. There is a transverse wave 
system, which is visible in Fig. 2 and is composed of waves which are roughly 
orthogonal to the x-axis, with crests curving gently away downstream. The second 
type of wave present in the solution is the divergent wave system, which is a fringe 
of short-length waves situated roughly at the edge of the transverse wave pattern; 
these are of such short wavelength with the present choice of Froude number as to 
be almost invisible in Fig. 2, however. 

Figure 3 shows the free-surface elevation for the same case F= 0.7, E = 2.6, 
obtained as a solution to the non-linear problem, using the numerical method of 
Section 4. This solution employed N= 44 intervals along the x-axis between the 
truncation boundaries x0 = -9, xN = 9, and A4 = 12 intervals along the y-axis 
between the limits y,=O and y, = 4.8. The scale on the z-axis has again been 
expanded by a factor of three, and both Fig. 2 and 3 show exactly the same portion 
of the free surface. It is a little surprising that the non-linear solution of Fig. 3 gives 
results which are relatively well predicted by the linearized solution in Fig. 2, in 
spite of the fact that the value E = 2.6 of the so&e strength is the largest value for 
which we could obtain solutions at this Froude number. In this respect, the 
3-dimensional solutions found here differ greatly from the similar 2-dimensional 
solutions investigated by Forbes [4], where the predictions of linearized theory 
were generally seen to be grossly inadequate to describe flow due to a large 
disturbance. 

In Fig. 4, the linearized and non-linear solutions presented in Figs. 2 and 3 are 
compared at the centre plane y = 0, for the same case F= 0.7, E = 2.6. The non- 
linear surface profile is sketched with a solid line, and the dotted line indicates the 
predictions of the linearized theory discussed in Section 3. This case represents the 
largest value of the source strength E for which Newton’s method converged to a 

FIG. 3. Perspective view of the free-surface elevation computed as a solution to the non-linear 
equations, for F= 0.7, E = 2.6. The vertical scale has been magnified by a factor of three. 
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FIG. 4. Comparison of the free-surface elevations obtained at the centre-plane y = 0 for the linearized 
and non-linear solutions, for the case F= 0.7, E = 2.6. The non-linear solution is indicated with a solid 
line, and a dotted line denotes the linearized surface elevation. 

non-linear solution. Although there are clear differences between the two solutions 
due to the effects of non-linearity, it is surprising that both solutions predict similar 
values for the maximum free-surface elevation, which occurs at the crest of the first 
downstream wave. Clearly, then, non-linearity does not affect the wave amplitude 
to the very large degree that occurs in 2-dimensional free-surface calculations 
(Forbes [4]). However, some of the effects of non-linearity familiar from 2-dimen- 
sional calculations are in evidence in Fig. 4 also. It may be observed that the crests 
of the non-linear waves downstream are rather sharply peaked, and that the 
troughs are much broader by comparison. These features do not exist in the corre- 
sponding linearized wave profile and are a standard indication of non-linearity in 
2-dimensional computations. Non-linearity has also affected the wavelength of the 
downstream waves in Fig. 4 in the usual way, resulting in a shortening of the non- 
linear waves relative to their linearized counterparts. As with 2-dimensional com- 
putations, it is presumably non-linear effects which have prevented the numerical 
method of this paper from giving solutions for E > 2.6. This is because the first wave 
downstream, in particular, is close to the maximum height z = 0.245 allowed by the 
Bernoulli equation (2.6) for steady waves. At this maximum height, the free surface 
must develop a stagnation point, at which the fluid comes to rest, and any attempt 
to increase the wave height beyond this value would result in unsteady flow related 
to the phenomenon of wave-breaking. 

The accuracy of the non-linear solutions has been tested, where possible, by 
varying the intervals dx and dy between numerical grid points and observing that 
the surface profiles are reasonably insensitive to such changes. For large-amplitude 
solutions, produced with large values of the source strength E, it is observed that a 
spurious wave-train of small amplitude appears upstream of the source; this is a 
numerical error associated with the truncation of the integral equation (2.15) at the 
first point x0 upstream, and has been discussed in detail by Forbes and 
Schwartz [6]. These waves may be seen in Fig. 4 and, since they have no 
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discernible effect upon downstream portions of the flow, are not of concern. There 
is another source of numerical error in the non-linear solutions due to the presence 
of the truncation boundary at x =x,,,. This gives an error in the solution profiles 
affecting only the last half-wavelength or so downstream, and may be seen in Fig. 4 
also. On the basis of these observations, we are therefore reasonably confident of 
the accuracy of our solutions, although it must be admitted that, since the results 
presented here were obtained with Newton’s method in 572 variables, we are 
limited by computer time and memory restrictions in the extent to which numerical 
accuracy can be tested in this way. 

6. SUMMARY AND DISCUSSION 

A numerical method has been presented here for the solution of genuinely 
3-dimensional non-linear free-surface problems in hydrodynamics, and its ability to 
compute an actual flow has been demonstrated. It is found that reasonable numeri- 
cal accuracy can be maintained over most of the computational domain when a 
relatively coarse grid spacing is used. A partial investigation of surface waves of 
extreme amplitude has been undertaken, and it has been determined that the effects 
of non-linearity familiar from 2-dimensional flow calculations have been observed 
to some extent here also, confirming the ability of the method to cope with 
circumstances in which non-linearity is important. However, a truly detailed study 
of surface waves near the maximum amplitude at which breaking occurs would 
undoubtedly require a finer grid than used here and has not been attempted in view 
of the increased demands on computer time required. In the present investigation, 
solutions were obtained for 23 different values of the source strength E; each such 
case required about 28 h of run-time on the PYRAMID 9810 mini-computer in the 
Mathematics Department at the University of Queensland. This is equivalent to 
about 6 h on a large mainframe computer or about half an hour on a vector- 
processor machine, and although these requirements are substantial, we do not 
believe them to be excessive for the type of problem under consideration. 

The algorithm presented here essentially involves the discretization of an 
integrodifferential equation and the solution of the resulting algebraic equations 
using a Newton-Raphson technique. The method is direct in the sense that it would 
solve a linear problem in a single iteration, but suffers from the drawback that it 
requires the storage and row reduction of a large Jacobian matrix of derivatives. It 
is therefore natural to inquire whether alternative iteration schemes might not be 
more efficient. In particular, the form of the integrodifferential equation (2.8) 
suggests a Neumann-type iteration scheme in which the value of @ is simply 
updated iteratively according to the value of the right-hand side of the equation. 
This question has been addressed to some extent by Forbes [3]. There, an integro- 
differential equation corresponding to the linearized problem of Section 3 was 
analyzed, and it was shown that an iteration scheme of this type could never 



346 LAWRENCE K. FORBES 

converge, effectively because the spectral radius of the iterated linear operator 
always exceeds unity. It is possible to generalize this result and show that the 
integrodifferential equation for the linearized problem can never be pre-conditioned 
by addition of an integrodifferential operator so as to give a convergent fixed-point 
iteration scheme. The same behaviour is surely to be expected in the non-linear 
problem, and it thus appears likely that simpler algorithms than the one presented 
here are incapable of yielding a solution. 

In the present numerical treatment, the infinite fluid surface has been truncated 
to a finite rectangular region, and contributions from the rest of the fluid have 
simply been ignored. This does not cause major difficulty, and errors arising from 
this procedure appear to be confined to a narrow region near the truncation boun- 
daries, except in the upstream region, where spurious waves of very small amplitude 
may be produced. More sophisticated treatment of the infinite free surface is 
possible, however, such as the procedure used by Lin, Newman, and Yue [lo], in 
which the finite computational domain was matched to a linearized expression in 
the far field. Such a technique may well yield improved results in our algorithm 
also, although not without an increase in computer run-time. 
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